Samstag, 17. Juni 2017

Begründen Sie, dass!

Als Lehrer stumpft man im Laufe der Zeit ab und wundert sich über gar nichts mehr. Nur wenn man dann eine Aufgabe vorgesetzt bekommt wie

    Begründen Sie, dass der Graph der Funktion f mit
    f(x) = x3+3x–1 genau eine Nullstelle hat,

dann will man es doch wissen: Seit wann heißt es denn "Begründen Sie, dass"? Google kann helfen: Es findet zwar für "Begründen Sie, weshalb" knapp 5000, für "Begründen Sie, warum" deren 30800 und für "Begründen Sie, dass" mehr als 60000 Treffer. Allerdings führen die ersten 100 Treffer bei der letzten Suche bis auf vereinzelte Ausnahmen auf lauter Aufgaben zur Schulmathematik. Schränkt man die Suche auf Bücher ein, liefert google fast 4000 Treffer, davon 10 aus den Jahren vor 2000, während es in diesem Zeitraum 30mal so viel Treffer mit "Begründen Sie, warum" gibt.

Die Floskel "Begründen Sie, dass" wurde also nach der Jahrtausendwende in der Schulmathematik eingeführt, und zwar aus guten Gründen. Als ich Mathematik studiert habe, haben die Aufgaben mit "Zeigen Sie, dass" begonnen, und erwartet wurde ein sauberer Beweis. Auch Schüler mussten damals noch etwas zeigen, etwa mit vollständiger Induktion oder durch einfache Rechnung, und ganz früher auch mit Hilfe einfacher geometrischer Sätze, die heute kein Didaktiker mehr kennt. Weil man das Beweisen in der Schule abgeschafft hat (Beweisen ist keine Allgemeinbildung, und Mathematikunterricht, so lehrt es die moderne Didaktik, muss nach Winter allgemeinbildend sein), geht das nicht mehr. Und weil man nicht mehr zeigen kann, weshalb etwas gilt, muss man jetzt begründen, dass etwas gilt. Zum Beispiel, dass eine kubische Funktion eine Nullstelle hat, und manche darunter genau eine - wir kennen das ja aus dem diesjährigen BW-Abi.

Die obige Aufgabe stammt aus der Aufgabensammlung  von diversen Autoren, darunter Prof. Pinkernell, Heidelberg (genauer: PH Heidelberg, aber das steht nicht im Dokument) und dem Casio-Luder Elschenbroich (in der Didaktik gibt es TI-Luder (etwa Prof. Hartwig Meissner und Prof. Bärbel Barzel) und Casio-Luder (wie eben Herr Elschenbroich), je nachdem, welche Firma Millionen springen lässt, damit die Begünstigten Artikel über die Vorteile des Unterrichtens mit TI bzw. Casio schreiben und sich in offenen Briefen an die Landesregierung darüber beschweren, dass die Abschaffung des GTR Baden-Württemberg in die mathematische Steinzeit katapultieren wird).

Interessant ist dabei nicht so sehr die Aufgabe selbst, sondern der Erwartungshorizont:

       Ein Lösungsverfahren zur Nullstellenbestimmung von Polynomen 
       dritten Grades kann nicht vorausgesetzt werden,

Das ist richtig, weil man Algorithmen wie Hornerschema, Polynomdivision und Newtonverfahren aus dem Lehrplan gekegelt hat, um Platz zu schaffen für die Bedienungsanleitung der graphikfähigen Taschenrechner. Warum das hier erwähnt wird, ist nicht ganz klar, denn es soll ja nicht die Nullstelle von f bestimmt werden, sondern begründet werden, dass die Funktion eine solche besitzt.

Das dürfte Schülern, die im letzten Jahrtausend Abitur gemacht haben, nicht schwerfallen, denn es ist f(0) = -1 und f(1) = 3. Die Funktion f ist stetig auf den reellen Zahlen und hat einen Vorzeichenwechsel auf dem Intervall [0,1], folglich hat f (nach dem Zwischenwertsatz) eine Nullstelle in diesem Intervall. Weil aber die Stetigkeit auch abgeschafft wurde (vom Zwischenwertsatz ganz zu schweigen), kann diese Lösung auch "nicht vorausgesetzt werden".

Wie sollen Schüler also begründen, dass die Funktion f genau eine Nullstelle hat? Nun, Pinkernell und Elschenbroich erwarten das folgende:

       Ein Lösungsverfahren zur Nullstellenbestimmung von Polynomen 
       dritten Grades kann nicht vorausgesetzt werden, deshalb wird eine
       graphische Betrachtung der Gleichungen x³–1 = 3x bzw. x³ = 1–3x 
       erwartet 

Da wäre ich, das gebe ich zu, in 100 Jahren nicht draufgekommen. Warum macht man aus der Nullstelle von x³ + 3x – 1 einen Schnittpunkt der beiden Funktionen
x³  – 1 und 3x (genauer wäre natürlich – 3x, das kann man schon mal übersehen)? Ich vermute, dass es daran liegt, dass Schüler zwar noch  x³  – 1 skizzieren können, aber bei  x³ + 3x – 1 überfordert sind, schließlich hat das ja bisher der GTR gemacht. Begründet, warum die Funktion einen Schnittpunkt hat, haben wir natürlich nicht; wir haben ja nicht einmal begründet, dass sie einen hat. Aber anscheinend reicht das den Herren Pinkernell und Elschenbroich.

Es gibt aber (und so soll es bei guten Aufgaben ja auch sein) noch eine zweite Begründung (gut, die erste war keine, aber wir wollen nicht kleinlich sein):

       Ein Lösungsverfahren zur Nullstellenbestimmung von Polynomen 
       dritten Grades kann nicht vorausgesetzt werden, deshalb wird eine
       graphische Betrachtung der Gleichungen x³–1 = 3x bzw. x³ = 1–3x 
       erwartet, oder eine Analyse der ersten Ableitung f‘(x) = 3x² + 3, aus 
      der hervorgeht, dass f überall streng monoton steigend ist.

Was uns diese Begründung sagen will, erschließt sich mir nicht. Die Ableitung der Funktion g(x) = ex ist ebenfalls positiv, woraus hervorgeht, dass g überall streng monoton steigend ist. Aber hat g deswegen genau eine Nullstelle? Die Exponentialfunktion, das haben Schüler auswendig gelernt, hat jedenfalls keine. Also ist sie ein Gegenbeispiel zur Begründung, dass eine Funktion genau eine Nullstelle hat, wenn f streng monoton steigt.

Natürlich kann ich mir denken, was Pinkernell und Elschenbroich gemeint haben, schließlich korrigiere ich seit 10 Jahren ganz ähnliche Fehler bei meinen Schülern. Sie haben gemeint, dass f keine zwei Nullstellen haben kann, wenn f streng monoton steigend ist. Aber zum einen steht das nicht da, zum andern ist es auch noch falsch: die Funktion h(x) = x – 1/x ist auf ihrem maximalen Definitionsbereich streng monoton steigend und hat die beiden Nullstellen x1 = –1 und x2 = 1.  Aber natürlich, werden Sie einwenden, gilt dies nur bei stetigen Funktionen ohne Definitionslücke. Und damit sind wir wieder am Anfang: die Bestimmung von Definitionsbereichen wird in BW nur an Realschulen unterrichtet (noch; für die Einführung von Quartilen, Medianen und Boxplots, die inzwischen auch die Gymnasiasten beglücken, braucht man sicher wieder etwas Platz).

Die ganze "Begründen-Sie-dass"-Industrie der modernen Didaktik ist ein ganz großer Schwindel. Es wird geschwurbelt, was das Zeug hält, und mit Mathematik hat das nicht nur nichts zu tun, vielmehr kann es mit Mathematik nichts zu tun haben, weil man dafür Definitionen und ein paar Sätze über reellwertige Funktionen braucht. Pinkernell und Elschenbroich können ganz sicher nicht "zeigen dass", und sie können auch nicht "begründen, warum". Sie können noch nicht einmal "begründen, dass".

3 Kommentare:

  1. Ein Grund, warum(!) die Aufgabenstellung ohne das Wörtchen "warum" auskommen muss, ist die Tatsache, dass Fragewörter (jedenfalls hier in NRW) verpöhnt sind. Es heißt also nicht "Welchen maximalen Flächeninhalt ...", sondern "Ermitteln Sie den maximalen Flächeninhalt ...".

    AntwortenLöschen
  2. Ich schätze, dass hinter diesem Phänomen vor allem die Liste der Operatoren (ermitteln ist einer, begründen ein anderer) steckt.

    AntwortenLöschen
  3. Ich verweise auch immer gern auf Erklärvideos, was Mathe Aufgaben angeht.

    AntwortenLöschen