Nein, nicht Helge. Der Mathematiklehrer Schneider. Und nicht die ganze Welt, sondern nur die Zahlbereiche \(\mathbb N\), \(\mathbb Z\), \(\mathbb Q\) und \(\mathbb R\).
Oder, wie es zwei Zeilen später heißt, die Zahlenbereiche:
Wer Oskar Perron kennt, erinnert sich an einen Brief, in dem er erklärt, warum der Begriff Zahlbereiche eigentlich ein Unsinn ist. Weil es so schön ist und weil ich als Lehrer ja einen gewissen Bildungsauftrag hatte, sei er hier zitiert:
Wissen Sie wohl, was ein Zahltag ist? Natürlich ist das der stets freudig begrüßte Tag, an dem gezahlt wird, im allgemeinen der Lohn für geleistete Arbeit. In diesem zusammengesetzten Wort hat nämlich die Silbe „Zahl“ gar nichts mit dem Begriff „Zahl“ zu tun, sondern es handelt sich um das Verbum aus (be) zahlen. Genauso ist es bei allen anderen Wörtern, die ebenso zusammengesetzt sind: Zahlkellner, Zahlkarte, Zahlmittel etc. Überall geht es ums bezahlen, also ums Geld, um das leidige, etwas anrüchige Geld, von dem man mit vorgehaltener Hand oder mit Augenzwinkern spricht.
Wer nun zum erstenmal das Wort Zahlkörper hört, denkt: Das wird halt auch so irgendein Körper sein, bei dem irgendwas bezahlt wird, das ist mir wurscht, interessiert mich nicht. Das Wort Zahltheorie werden sie wohl noch nicht gehört haben, ich auch nicht. Das müsste eine Theorie des Bezahlens sein, in der also etwa untersucht wird, wie man bezahlt, wenn man kein Geld hat. Die schöne Zahlentheorie, von der Sie sicher schon gehört haben, wäre also zur Pumpologie herabgewürdigt.
Das Wort Zahlkörper hat Hilbert eingeführt, der aufs Genaueste definiert hat, welchen Begriff er damit meint. Nur nach der Suche nach einem Namen ist ihm, wohl aus Versehen, ein Malheur passiert und so kam das verkorkste Wort auf die Welt, das man, wohl aus Ehrfurcht vor Hilbert, nie abgeschafft hat.
Oskar Perron war ein solider Mathematiker, der aber dem Zeitgeist, vor allem in der abstrakten Algebra, etwas hinterhergehinkt ist. Und wenn wir schon einen Brief zitieren, sei hier ein zweiter, geschrieben im Jahre 1940 an den Rektor der Ludwig-Maximilians-Universität München, ebenfalls zitiert:
Magnifizenz!
An der vom Herrn Reichsdozentenbundsführer Ministerialdirektor Professor Dr. Walter Schultze veranstalteten Feier der Dozentenbundsakademieen kann ich mich nicht beteiligen.
Grund:
Da ich weder Mitglied einer Dozentenbundsakademie noch überhaupt des Dozentenbundes bin, kann meine Beteiligung wohl nur in der Rolle eines wissenschaftlichen Ehrengastes gedacht sein. Nun bin ich aber Mitglied verschiedener deutscher wissenschaftlicher Akademieen, und gegenüber diesen Körperschaften und ihren Mitgliedern hat der Reichsdozentenbundsführer in der Festrede bei Gründung der Dozentenbundsakademie Kiel seiner Verachtung dadurch Ausdruck gegeben, dass er erklärte, die deutschen Akademieen hätten seit Leibniz wissenschaftlich nichts geleistet und seien heute nur als Gesellschaften von verkalkten wissenschaftlichen Veteranen anzusehen
Zweierlei ist denkbar. Entweder der Reichsdozentenbundsführer hat mit dieser geringen Einschätzung recht oder er hat nicht recht. Im ersten Fall kann es dem Reichsdozentenbundsführer gewiss keine Freude machen, unter seinen Ehrengästen so minderwertige wissenschaftliche Persönlichkeiten zu sehen; ich möchte ihm diesen Anblick, was meine Person anbelangt, jedenfalls ersparen. Im zweiten Fall kann es aber mir nicht zugemutet werden, Ehrengast bei einem Mann zu sein, der die Akademieen und ihre Mitglieder zu Unrecht derart verunglimpft hat, und vermutlich wehrlos zuzuhören, wenn die Ehrengäste abermals in der gleichen Weise verächtlich gemacht werden.
Heil Hitler !
O. Perron
Das haben sich seinerzeit nicht viele getraut.
Zurück zu Herrn Schneider. Der traut sich auch was. Denn er kann die Zahlbereiche anschaulich erklären. An einem Modell. Genauer: Am
Ohne Scheiß. Herrn Schneiders Spinat-Spiegelei-Modell funktioniert so:Die didaktischen Neuerungen sind noch nicht ganz vorbei. Oder hat jemand gemerkt, dass dies eine Aufgabe ist?
Sogar eine Aufgabe mit Lösung. Und zwar mit der hier:In der Lösung ist das Spinat-Spiegelei-Modell zum Bratpfannenmodell mutiert, die Zahlbereiche sind wieder Zahlenbereiche, und die Zahl 3 liegt, wie es sich gehört, im Eigelb, während \(\sqrt{6}\) zwar auf dem Teller (also der Bratpfanne) liegt, aber nicht im Eigelb, im Eiweiß oder im Spinat.
So werden also schwierige mathematische Überlegungen durch den Transport in die Lebenswelt von Schülern und Schülerinnen auf ein Niveau heruntergebrochen, mit dem heutige Gymnasiasten etwas anfangen können.
Mein Leidensgenosse AR, der mir dieses Schuljahr eine Woche voraus ist, weist darauf hin, dass unter den Bearbeitern dieses Schulbuchs eine gewisse Kerstin Schäfer ist. Diese hat einen erstaunlichen Bildungsgang hinter sich:
Magisterstudium der Geschichte, der Archäologie des Mittelalters und der Neuzeit und der Denkmalpflege an der Otto-Friedrich Universität Bamberg; Zusatzqualifikation als Kulturmanagerin; zur Zeit Promotionsvorhaben am Lehrstuhl für Denkmalpflege in Bamberg über die Bauwerke der Eisenbahn in Oberfranken.
Ich hatte bisher immer gedacht, heutige Schulbuchautoren hätten in ihrem Mathematikstudium kaum aufgepasst und von dem, was sie mitbekommen haben, das wenigste verstanden. So kann man sich irren. Jetzt werden die Bücher schon von Frauen (die zweite ist Mathematiklehrerin Ulrike Willms) bearbeitet, deren mathematische Qualifikation über ein Abitur nicht hinausgeht.
Schade, dass wir in BW keine so tollen Schulbücher haben. In gewisser Weise ist das ganze ja Kunst. Expressionismus, wenn ich so tun wollte, als wüsste ich, was das ist. Daher die ganze Seite noch einmal als Gesamtkunstwerk:
Auch das muss noch gesagt werden: Wenn man \(\mathbb Q\) um alle Zahlen erweitert, die nicht als Bruch darstellbar sind (also um alle Zahlen, die nicht zu \(\mathbb Q\) gehören), dann erhält man so einiges, aber ganz sicher nicht die reellen Zahlen. Wer sich noch an die Schulbücher von vor 40 Jahren erinnern kann, sollte ahnen, dass die Konstruktion der reellen Zahlen (Intervallschachtelung) ganz so einfach wie heute in NRW nicht funktioniert.